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Automated improvements by 
local steps 

In this world - I am gonna walk 
Until my feet - refuse to take me any longer 
Yes I’ m gonna walk - and walk some more. 

(Macy Gray and Zucchero Fornaciari) 



Optimization 

•  Most problems can be cast as finding the 
optimal value for a suitable objective 
function, subject to constraints 

•  Methods to optimize functions are the source 
of power  for most problem solving and 
decision making activities 

•  Maximizing = identifying the input values 
causing the maximum output value 

 



Two related problems:  
Minimization and root finding 

Nonlinear equations problem: solving a set of 
nonlinear equations 

 

 

 

Unconstrained minimization 



Optimization and learning 

• Optimization for learning: 

Select, among a class of models, one that is 
most consistent with the data provided, e.g., 
minimizing the sum of squared differences 

• Learning for optimization 

Learning is used in optimization algorithms to 
build local models of the function to be 
optimized 



Derivative-based techniques for 
optimization in one dimension 

• Root finding: How does one find a point where 
a differentiable function f(x) is equal to zero? 

 

Start with a point sufficiently close to the target 
and iterate the following: 

1. Find a local solvable model 

2. Solve the local model 

  



Newton’s method 

• Let f(x) be a differentiable function. The local 
model around a point xc  can be derived from 
Taylor series approximation 

 

 

•  A local model  around the current estimate xc  
is therefore 



Root finding: Newton’s method 



Newton’s method 

•  by finding the root of the model one gets a 
prescription for the next value x+ of the 
current estimate 

 

 

 

 

• Iterating the two steps, under some 
hypothesis, xc converges to the solution  



Newton’s method: convergence 

The following lemma easily follows from the previous definition 



Newton’s method: convergence 

Using lemma one, it is easy to proof the following 



Newton’s method: convergence 



Root finding: Bisection method 



Root finding: Bisection method (2) 

What if no guarantee of starting sufficiently 
close? Bisection method is more robust! 

  

1. subdivide an initial interval into two parts 
 

2. observe the value at the middle point 
 

3.  continue the search by considering only the 
left or the right sub-interval 



Newton and bisection: pros & cons 
1.Newton: 

–  quadratic convergence 

– only locally convergent 

2.Bisection  
– simple and effective 

– globally convergent 

– logarithmic convergence 

– cannot be extended to higher dimensions 

 

Hybrid methods combine global convergence 
and fast local convergence 



Hybrid methods 

•  Generic scheme:  combine global convergence and 
fast local convergence 



Backtracking 

if Newton’s step leads too far, beyond the position of the root, one reverts 
the direction coming back closer to the root position 



Approximate derivative with secant 

•  If derivatives are not available one can 
approximate them with the secant: 

 

• A convergence theorem is valid:  



Minimization of differentiable functions 

• If a differentiable function f attains a 
minimum at x* , then f’(x*)=0. 

 

• The problem can be reduced to finding a root 
of the derivative function (necessary 
condition, but not sufficient) 

 

• We know how to do it! (just apply Newton, or 
bisection, or a hybrid algorithm, to f’) 



Solving models in more dimensions 

•  Solving the local quadratic model in higher 
dimension amounts to solving a quadratic 
form. 

•  Newton’s method now requires that the  
gradient of the model be equal to zero. 

•  Given a step s  the quadratic model is 

 

 



Positive-definite quadratic forms 



Solving models in more dimensions(2) 

•  After deriving the gradient, one demands 

 

 

 

 

•  The solution of the linear system can be 
found in one step of cost O(n3)  for the 
standard matrix inversion 



Numerical instability 

•  computation carried out by computers has to 
deal with issues of numerical stability 
 

•  Errors can accumulate in a dangerous way, 
leading to wrong numerical solutions 
 

• The solution can be very sensitive to small 
changes in the data (ill conditioning) 



Ill conditioning 

Ill-conditioning: solution is very sensitive to changes in the data. In this 
case two linear equations are very similar and a small change in the line direction is 
sufficient to shift the solution by a large amount. 



Quantifying ill-conditioning 

• The condition number k(H) of a matrix H is 
defined as ||H|| ||H-1|| 
 
 

•  k(H) measures the sensitivity of the solution 
of a linear system to finite-precision 
arithmetic 



Quantify ill conditioning(2) 

•  If a linear system H x = b  is perturbed with an 
error proportional to ε  

 

 

•  the relative error in the solution can be 
bounded as: 

 



Cholesky factorization 

•  For symmetric and positive definite matrices, 
Cholesky factorization is an extremely stable way 
to find a triangular decomposition. 

 
 

• With L lower triangular, D diagonal with strictly 
positive elements.  

• Since the diagonal is strictly positive, we can 
write 
 
 

•  where R  is a general upper triangular matrix. 
 



Cholesky decomposition: construction 

•  R can be computed directly from the 
element-by-element equality: 

 

 

 

 

• This process requires 1/6 n3  multiplications 
and additions and n  square roots 



Solving a linear system with Cholesky 
factorization 

• Once the Cholesky factorization is available, 
the original equation becomes 

 

•  It can be solved by back-substitution 
 

 

 

•  The cost for solving the equation is O(n2) : the 
dominant cost is in the factorization 



Gradient or steepest descent 

Two gradient-descent experts on the mountains surrounding Trento, Italy. 



Gradient descent 

• finding the minimum of the quadratic model 
by matrix inversion is often neither efficient 
nor robust 

• steepest descent is a possible strategy to 
gradually improve a starting solution 

•  moving along the negative gradient, the 
function decreases for sufficiently small 
values of the step 

 

 



Gradient descent: pros & cons 

• simple to implement 

• intuitive interpretations (think about a drop of 
water on a surface, or about a skier) 

• used in many applications 

• ε has to be carefully chosen 

•  no global vision is available to guide the search, 
only local information. 

•  If the matrix is ill-conditioned , the gradient 
direction does not point towards the optimal 
value 

 



Gradient not always the “best” direction 

 

The gradient is not always an appropriate direction: the trajectory can zig-zag (right 
figure). 



Conjugate gradient 
• Conjugate gradient method aims at prescribing a 

set of directions along which one should 
iteratively optimize the function  

• Two directions are mutually conjugate  with 
respect to the matrix H if  
 

•  After minimizing in direction pi , the gradient at 
the minimizer will be perpendicular to pi 

• The second minimization is in direction pi+1 : the 
change of the gradient along this direction is  
gi+1 -gi = αHpi+1  and it is perpendicular to pi 

•  being the gradient perpendicular  to pi, the 
previous minimization is not spoiled 

 



Conjugate gradient: construction of 
the directions 

• Define yk=gk+1-gk  

• The first search direction p1  is given by the negative gradient -
g1 . The sequence xk  of approximations to the minimizer is 
defined by: 

 

 

•   gk  is the gradient, αk  is chosen to minimize E  along the pk 

and βk  is given by: 



Nonlinear optimization in more dimensions 

• Newton’s method in more dimensions consists 
of solving the quadratic model 



Newton’s method in higher 
dimensions: possible problems 

•  Conditions for convergence:  

– initial point is close  to the minimizer x,  

– Hessian is positive definite at the minimizer 

 

 Problems if the Hessian is not positive definite, singular or ill-
conditioned 
 

Modified Newton’s methods change the local model to obtain a 
sufficiently positive-definite and non-singular matrix.  
 

Combine a fast tactical local method with a robust strategic 
method  to assure global convergence 



Global convergence through line searches 

•  Global convergence is obtained by adopting line searches 
along the identified direction 

•  if H is positive definite, Newton’s direction is  a descent 
direction 

 
 
•  How do we ensure global convergence? 

 
f  value must decrease by a sufficient amount w.r.t the step 
length 
step must be long enough 
search direction must remain not orthogonal to the 
gradient 
 



Global convergence through line 
searches(2) 

• In order to guarantee the above points we can 
resort to  Armijo and Goldstein conditions 

 

 

 

 



Global convergence through line 
searches(3) 

•  If the Armijo-Goldstein conditions are satisfied at 
each iteration and if the error is bounded below, 
one has the following global convergence  
property: 
 

•  provided that each step is away from 
orthogonality to the gradient: 

 
 
•  If the Armijo-Goldstein conditions are 

maintained, one-dimensional searches lead to 
global convergence 
 



Visualization of Armijo - Goldstein conditions. 



Cure for indefinite Hessians 

•  If the Hessian is indefinite one can use the 
modified Cholesky  method 

• It consists in adding to H a simple diagonal 
matrix: 

 

 and performing a Cholesky decomposition on 
 the modified Hessian 

•  This amounts to adding a positive definite 
quadratic form to our original model. 
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Relations with model-trust region 
methods 

•  In model-trust region methods  the model is 
trusted only within a region, that is updated 
by using the experience accumulated during 
the search process. 



Relations with model-trust region 
methods(2) 

•  The diagonal modification of the Hessian is a 
compromise between gradient descent and 
Newton’s method : 

 

μ tends to zero        the step tends to coincide 
with Newton’s step,  

μ is large                   the step tends to be 
proportional to the negative gradient: 



Secant methods in higher dimension 

•  Secant techniques are useful if the Hessian is 
not available or costly to calculate. 

•  Let the current and next point be xc  and x+ , 
respectively, and let’s define sc = x+ - xc  and 

 

•  The analogous “secant equation” is 

 



Secant methods in higher dimension 

•  The above equation does not determine a 
unique H+  but leaves the freedom to choose 
from a (n2 - n)  dimensional affine subspace 

•  The equation will not be used to determine  
but to update  a previously available 
approximation 

• One can find the matrix in Q(sc, yc) that is 
closest to the previously available matrix 



Secant methods in higher dimension: 
Broyden’s update 

•  The resulting Broyden’s update is 

 

 

•  Warning: it may be not symmetric, but 

• Iterating Broyden projection and a projection 
onto the subspace of symmetric matrixes one 
obtains a sequence of matrixes converging to 
a solution that is both in Q(sc, yc)  and 
symmetric! 



Secant methods in higher dimension: 
Powell’s update 

•  The symmetric secant update of Powell is 
given by a composition of Broyden’s update 
and a projection onto the subspace of the 
symmetric matrixes 

 

 

• For the update to be also positive definite  we 
can resort to the Broyden, Fletcher, Goldfarb, 
and Shanno (BFGS) update, that reads 



Second-order methods with linear 
complexity 

• Complexity: 

-Computing the exact Hessian: O(n2) operations, 
O(n2) memory 
-Determining the search direction: O(n3) operations 
 

computation and memory requirements to find the 
search direction can be reduced to O(n): calculate 
some second-order information by starting from 
the last gradients. 



One-step method 

•  The one-step  method requires only vectors  
computed from gradients. The new search 
direction p+  is obtained as: 
 

• Where 
 

 
 

sc,  gc and  yc are respectively last step, gradient and 
difference of gradients. 



One-step method 

•  The one-step  method requires only vectors  
computed from gradients. The new search 
direction p+  is obtained as: 
 

• Where 
 

 
 

sc,  gc and  yc are respectively last step, gradient and 
difference of gradients. 



Derivative-free techniques: 
 the Reactive Affine Shaker (RAS) 

• Partial derivative may not be computable in 
some cases (the function may not be 
differentiable, or the computation may be too 
hard) 
 

• In this case, we use optimization methods 
based only on the knowledge of  function 
values 



Adaptive random search: general 
scheme 

Choose an initial point in the configuration space and an 
initial search region surrounding it and repeat: 

1. Generate a new candidate point sampling the search 
region according to a given probability measure 

2. If the value of the function at the new point is is 
greater then the current (failure to improve), 
compress the search region, otherwise expand it 

3. If the sample is successful the new point becomes the 
current point, and the search region is moved  so that 
the current point is at its center 



RAS: adaptation of the sampling region 

• Reactive Affine Shaker (RAS): self-adaptive 
and derivative-free optimization method 

• Main design criterion: adaptation of a search 
region by an affine transformation  

• The modification takes into account the local 
knowledge  derived from trial points 
generated with a uniform probability in the 
search region.  



RAS algorithm pseudo-code 



RAS algorithm pseudo-code, 
comments 

• Testing the function improvement on both x+Δ 
and x-Δ is called double-shot strategy 

•  It drastically reduces the probability of 
generating two consecutive unsuccessful samples 

•  If the double-shot strategy fails, then the 
transformation is applied by replacing the 
expansion factor ρ with its inverse ρ-1 

•  the search speed is increased when steps are 
successful, reduced only if no better point is 
found after the double shot 



Reactive affine shaker geometry 

 Reactive Affine Shaker geometry: two search trajectories leading to 
two different local minima 



Repetitions for robustness and 
diversification 

•  RAS searches for local minimizers and is 
stopped as soon as one is found 

•  Even when a local minimum is found, it is 
generally impossible to determine whether it 
is global or not 

•  A simple way to continue the search is to 
restart from a different initial random point 



The Inertial Shaker 

•  RAS requires matrix-vector multiplications to 
update the search region: it is slow if the 
number of dimensions is large 

Solution: Inertial shaker: 

•  the search box is always identified by vectors 
parallel to the coordinate axes 

•  a trend direction  is identified by averaging a 
number of previous displacements 



Inertial Shaker, pseudo-code 



Inertial Shaker, comments on the 
pseudo-code 

•  find trend returns a weighted average of the 
mdisp  previous displacements 
 
 
 
 
 

• amplification  and history depth  are defined in 
the algorithm 

• mdisp  is chosen in order to cut off negligible 
exponential weights and to keep the past history 
reasonably small. 



GIST 

•  The purpose of optimization is to design 
automated techniques to identify inputs leading 
to maximum (or minimum) output values . 

• Basic idea: Start from an initial value, apply small 
local changes to the inputs, test their effects. 
Decide whether to accept the local change or not. 

•  Repeat until there is progress, leading to better 
and better output values. 



GIST (2) 

• If derivatives are available, one can predict 
the effect of small local changes 

•  If derivatives are not available, one can test 
small changes directly (RAS) and keep locally 
adapted models  to reduce function 
evaluations. 

•  Local adaptation occurs by learning from the 
previous steps of the search . 


