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Automated improvements by
local steps

In this world - I am gonna walk

Until my feet - refuse to take me any longer
Yes I’ m gonna walk - and walk some more.
(Macy Gray and Zucchero Fornaciari)




Optimization

 Most problems can be cast as finding the
optimal value for a suitable objective
function, subject to constraints

 Methods to optimize functions are the source
of power for most problem solving and
decision making activities

 Maximizing = identifying the input values
causing the maximum output value



Two related problems:
Minimization and root finding

Nonlinear equations problem: solving a set of
nonlinear equations

Given F : R" — R"
find z* € R™ such that F'(z*) =0 € R"

Unconstrained minimization

Given f : R" — R
find +* € R™ such that f(x*) < f(x) forevery z € R",



Optimization and learning

e Optimization for learning:

Select, among a class of models, one that is
most consistent with the data provided, e.g.,
minimizing the sum of squared differences

* Learning for optimization

Learning is used in optimization algorithms to
build local models of the function to be
optimized



Derivative-based techniques for
optimization in one dimension

* Root finding: How does one find a point where
a differentiable function f(x) is equal to zero?

Start with a point sufficiently close to the target
and iterate the following:

1. Find a local solvable model
2. Solve the local model



Newton’s method

e Let f(x) be a differentiable function. The local
model around a point x_ can be derived from
Taylor series approximation

f() = flzd) + @) - zg) + TSI

* Alocal model around the current estimate x
is therefore

Me() = flae) + f (o) (& — ) |

C




Root finding: Newton’s method

Figure 18.1: Local model for Newton’s method.



Newton’s method

* by finding the root of the model one gets a
prescription for the next value x, of the
current estimate

{ b — o f(ze) J
+ c 7 (e)

* [terating the two steps, under some
hypothesis, x. converges to the solution




Newton’s method: convergence

Definition 1 (Lipschitz continuity) A function g is Lipschitz continuous with con-
stant yina set X ( g € Lip. (X) ) if for every z,y € X:

9(z) — g(y)| < vlz —yl.

The following lemma easily follows from the previous definition

Lemma 1 Ler f' € Lip. (D) for an open interval D. Then for any x,y € X:

_ a2




Newton’s method: convergence

Using lemma one, it is easy to proof the following

Theorem 1 Let f : D — R for open interval D, f' € Lip.,(D) (Lipschitz),
|f'(z)| = p (derivative bounded away from zero) in D.

If f(z) = 0 has a solution x* € D, then the solution can be found by Newton
method if the starting point x is sufficiently close:
there is 1 > 0 such that if |zo — x| < 1, the sequence:

f(zk)

Tl = T i)

exists and converges to x*. In addition:

|1 — 27| < Elhc;ﬂ — r*|?.

i



Newton’s method: convergence
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Figure 18.2: Convergence 1s guaranteed if the starting point zg is close to =*.



Root finding: Bisection method

10 XL r

Figure 18.3: The bisection method.



Root finding: Bisection method (2)

What if no guarantee of starting sufficiently
close? Bisection method is more robust!

1. subdivide an initial interval into two parts
2. observe the value at the middle point

3. continue the search by considering only the
left or the right sub-interval



Newton and bisection: pros & cons

1.Newton:
— qguadratic convergence
— only locally convergent

2.Bisection
— simple and effective
— globally convergent
— logarithmic convergence
— cannot be extended to higher dimensions

Hybrid methods combine global convergence
and fast local convergence



Hybrid methods

* Generic scheme: combine global convergence and
fast local convergence

. function hybrid quasi_newton (f :R — R, zg)

» [ while not finished

3 . Make local model of f around zj, find z that solves the model;
4 if 34 1s acceptable then move

s. | | elsepick x4 by using a safe global strategy.

Figure 18.5: The hybrid quasi-Newton algorithm.



Backtracking

Figure 18.4: Backtracking: Newton step gives the direction

if Newton’s step leads too far, beyond the position of the root, one reverts
the direction coming back closer to the root position



Approximate derivative with secant

 |f derivatives are not available one can

approximate them with the secant:
f(f’:c') o f['-T‘—)
Te —T_

* A convergence theorem is valid:

i

Theorem 2 Ler f : D — R for open interval D, f' € Lip. (D) (Lipschitz),
|f'(x)| = p (derivative bounded away from zero) in D.

If f(z) = 0 has a solution x* € D, then there exist positive constants 1,1’ such
that if 0 < |hg| <1 and if |xo — x*| < n, then the sequence

f(xr) f(zr + hy) — f(xg)

T4+l = Tk — y A =
T ag hk

converges q — linearly to x™.




Minimization of differentiable functions

e |f a differentiable function f attains a
minimum at x, then f’(x7)=0.

* The problem can be reduced to finding a root
of the derivative function (necessary
condition, but not sufficient)

 We know how to do it! (just apply Newton, or
bisection, or a hybrid algorithm, to ')



Solving models in more dimensions

* Solving the local quadratic model in higher
dimension amounts to solving a quadratic
form.

* Newton’s method now requires that the
gradient of the model be equal to zero.

* Given astep s the quadratic model is

ZJ”’*_I_LLHHSI si = ¢ S—|—§ s Hs

1=1 =1
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Figure 18.6



Solving models in more dimensions(2)

e After deriving the gradient, one demands

VQ(s)

HsN = —g (Newton equation)

0=g+ Hs;

* The solution of the linear system can be
found in one step of cost O(n3) for the
standard matrix inversion



Numerical instability

 computation carried out by computers has to
deal with issues of numerical stability

* Errors can accumulate in a dangerous way,
leading to wrong numerical solutions

* The solution can be very sensitive to small
changes in the data (ill conditioning)



Il conditioning

A

solution_1

S
/ /fﬁltiﬂllz

lll-conditioning: solution is very sensitive to changes in the data. In this
case two linear equations are very similar and a small change in the line direction is
sufficient to shift the solution by a large amount.




Quantifying ill-conditioning
* The condition number k(H) of a matrix H is

defined as | |H|| | |[H] ]
|H|| = max,([|Hz|[/|z]])

* k(H) measures the sensitivity of the solution
of a linear system to finite-precision
arithmetic



Quantify ill conditioning(2)

* |falinear system H x =b is perturbed with an
error proportional to €

(H +eF)s(e) =g+ef

 the relative error in the solution can be
bounded as:

s@=sll _ o MeFIl, llefl
s =" O




Cholesky factorization

For symmetric and positive definite matrices,
Cholesky factorization is an extremely stable way
to find a triangular decomposition.

H=LDL"

With L lower triangular, D diagonal with strictly
positive elements.

Since the diagonal is strictly positive, we can
write

H=LDY?DY21T — [LIT = RTR

where R is a general upper triangular matrix.



Cholesky decomposition: construction

* R can be computed directly from the
element-by-element equality:

/ﬁll ayz ... ﬁln\ /Tll
as; az2 ... A2n, 21 122
\&nl an2 « e &nn/ \Tnl T'n2

/T11 12
22

Tnn/

\

* This process requires 1/6 n3 multiplications

and additions and n square roots




Solving a linear system with Cholesky
factorization

* Once the Cholesky factorization is available,
the original equation becomes

R'"Rs = g
* [t can be solved by back-substitution
Rls, = —¢g use forward substitution:

Rs = sy use backward substitution.

* The cost for solving the equation is O(n?) : the
dominant cost is in the factorization



Gradient or steepest descent
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Two gradient-descent experts on the mountains surrounding Trento, Italy.



Gradient descent

e finding the minimum of the quadratic model
by matrix inversion is often neither efficient
nor robust

* steepest descent is a possible strategy to
gradually improve a starting solution

* moving along the negative gradient, the
function decreases for sufficiently small
values of the step

Ly = Le— Evf f(‘l’—l-) < f(tlfr:)



Gradient descent: pros & cons

simple to implement

intuitive interpretations (think about a drop of
water on a surface, or about a skier)

used in many applications
€ has to be carefully chosen

no global vision is available to guide the search,
only local information.

If the matrix is ill-conditioned , the gradient
direction does not point towards the optimal
value



Gradient not always the “best” direction
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The gradient is not always an appropriate direction: the trajectory can zig-zag (right
figure).



Conjugate gradient

Conjugate gradient method aims at prescribing a
set of directions along which one should
iteratively optimize the function

Two directions are mutually conjugate with
respect to the matrix H if

p; Hp; =0 when i j.
After minimizing in direction p,, the gradient at
the minimizer will be perpendicular to p,

The second minimization is in direction p;,, : the
change of the gradient along this direction is
g., -8 = aHp,, anditis perpendicular to p,
being the gradient perpendicular to p,, the
previous minimization is not spoiled



Conjugate gradient: construction of

the directions

* Define y,=g,,-8,
* The first search direction p, is given by the negative gradient -
g, . The sequence x, of approximations to the minimizer is

defined by: Tpe1 = Tk + QOkPk,

Pk+1 = —Ok+1 + BkPk

* g, isthegradient, a, is chosen to minimize E along the p,
and Bk is given bv:

T
B = Ik Z‘EHI (Polak-Ribiere choice),
9. 9k
or by:
QT Jk+1
B = ktl (Fletcher-Reeves choice).

gt gk



Nonlinear optimization in more dimensions

* Newton’s method in more dimensions consists

of solving the quadratic model

1

me(ze +p) = flxe) + V(z) p+ EFTVQJC(;EC)}),

function multi_dimensional_newton (f: R" — R, g € R")
B fis twice continuously differentiable

while not finished
solve V2 f(x.)sN = -V f(zx.);
B (I}k_|_]_ — L —+ SN.

A T

Figure 18.10: Newton method in more dimensions.



Newton’s method in higher
dimensions: possible problems

* Conditions for convergence:
— initial pointis close to the minimizer x,
— Hessian is positive definite at the minimizer

Problems if the Hessian is not positive definite, singular or ill-
conditioned

Modified Newton’s methods change the local model to obtain a
sufficiently positive-definite and non-singular matrix.

Combine a fast tactical local method with a robust strategic
method to assure global convergence



Global convergence through line searches

Global convergence is obtained by adopting line searches
along the identified direction

if H is positive definite, Newton’s direction is a descent
direction

%(Ic +As™Y) =V f(z) st = V@ )TH WV f(z.) <0
How ao we ensure gl1opbal convergencer

f value must decrease by a sufficient amount w.r.t the step
length

step must be long enough

search direction must remain not orthogonal to the
gradient



Global convergence through line
searches(2)

* |[n order to guarantee the above points we can
resort to Armijo and Goldstein conditions

f(ze +Aep) < f(ze) + aAV f(ze) " p,
where a € (0,1) and A, > 0;

Vf(ze+Acp)Tp > BV f(z)"p.

where 3 € (a, 1).



Global convergence through line
searches(3)

If the Armijo-Goldstein conditions are satisfied at
each iteration and if the error is bounded below,
one has the following global convergence

property: lim V f(z,) =0,

provided that each step is away from

orthogonality to the gradient:

Am Vf(ze)si/|sell # 0.

If the Armijo-Goldstein conditions are
maintained, one-dimensional searches lead to
global convergence
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Visualization of Armijo - Goldstein conditions.



Cure for indefinite Hessians

 |fthe Hessian is indefinite one can use the
modified Cholesky method

* |t consists in adding to H a simple diagonal
matrix:
H' = V?(mc) + pel, pre >0

and performing a Cholesky decomposition on
the modified Hessian

* This amounts to adding a positive definite
guadratic form to our original model.



Relations with model-trust region
methods

* |n model-trust region methods the model is
trusted only within a region, that is updated
by using the experience accumulated during
the search process.

Theorem 3 Suppose that we are looking for the step s. that solves:

1
min me(ze +s) = f(ze)+ Vf(z:)' s+ ESTHES
subject to ||s|| < é..
The above problem is solved by:
s(u) = —(H, + pI) 'V f(z,), (18.14)

for the unique p > 0 such that the step has the maximum allowed length (||s(p)| =
d.), unless the step with . = 0 is inside the trusted region (||s(0)|| < §.), in which
case s(0), the Newton step, is the solution.



Relations with model-trust region
methods(2)

* The diagonal modification of the Hessian is a
compromise between gradient descent and
Newton’s method :

d

U tends to zero——the step tends to coincide
with Newton’s step,

L is large —— the step tends to be
proportional to the negative gradient:



Secant methods in higher dimension

e Secant techniques are useful if the Hessian is
not available or costly to calculate.

* Let the current and next point be x. and x, ,
respectively, and let’s define s_=x, - x. and

'E_J’_c_ — vf(I‘F) _ vf[:lc)

 The analogous “secant equation” is

Hiys. =y..



Secant methods in higher dimension

 The above equation does not determine a
unique H, but leaves the freedom to choose
from a (n%? - n) dimensional affine subspace

 The equation will not be used to determine
but to update a previously available
approximation

* One can find the matrix in Q(s,, y.) that is
closest to the previously available matrix



Secant methods in higher dimension:
Broyden’s update

 The resulting Broyden’s update is

(yc' T HCSE)Sg
sl's,

(Hi)1 = He +

 Warning: it may be not symmetric, but

* [terating Broyden projection and a projection
onto the subspace of symmetric matrixes one
obtains a sequence of matrixes converging to
a solution that is both in Q(s,, y.) and
symmetric!



Secant methods in higher dimension:
Powell’s update

* The symmetric secant update of Powell is
given by a composition of Broyden’s update
and a projection onto the subspace of the
symmetric matrixes

H H. + (yc — HcSG}SE + Sc(ye — H.:S.:)T < Yo — HeSe, 80 > 5‘:5:{
+ — L1¢ —

T, (sTs0)?

S0 100

* For the update to be also positive definite we
can resort to the Broyden, Fletcher, Goldfarb,
and Shanno (BFGS) update, that reads

yeyg‘ HESESEH.:
H_|_ — HC —|— T — T .
y{' SE‘ Sg HESC




Second-order methods with linear
complexity

 Complexity:

-Computing the exact Hessian: O(n?) operations,
O(n?) memory

-Determining the search direction: O(n3) operations

computation and memory requirements to find the
search direction can be reduced to O(n): calculate
some second-order information by starting from
the last gradients.



One-step method

* The one-step method requires only vectors
computed from gradients. The new search

direction p, is obtained as:

P+ = —4, + Acsc + chc:

e Where

T T T
AE:_(]-_'_ycyC) Sggﬂ_l_ycgﬂ ?

T T T
S.Ye /) S, Ye S, Ye

T
BE — SC gﬂ

sly,

S., 8.and y. are respectively last step, gradient and

difference of gradients.



One-step method

* The one-step method requires only vectors
computed from gradients. The new search

direction p, is obtained as:

P+ = —4, + Acsc + chc:

e Where

T T T
AE:_(]-_'_ycyC) Sggﬂ_l_ycgﬂ ?

T T T
S.Ye /) S, Ye S, Ye

T
BE — SC gﬂ

sly,

S., 8.and y. are respectively last step, gradient and

difference of gradients.



Derivative-free techniques:
the Reactive Affine Shaker (RAS)

* Partial derivative may not be computable in
some cases (the function may not be
differentiable, or the computation may be too

hard)

* In this case, we use optimization methods
based only on the knowledge of function
values



Adaptive random search: general
scheme

Choose an initial point in the configuration space and an
initial search region surrounding it and repeat:

1.

2.

Generate a new candidate point sampling the search
region according to a given probability measure

If the value of the function at the new point is is
greater then the current (failure to improve),
compress the search region, otherwise expand it

If the sample is successful the new point becomes the
current point, and the search region is moved so that
the current point is at its center



RAS: adaptation of the sampling region

* Reactive Affine Shaker (RAS): self-adaptive
and derivative-free optimization method

* Main design criterion: adaptation of a search
region by an affine transformation

 The modification takes into account the local
knowledge derived from trial points
generated with a uniform probability in the
search region.



RAS algorithm pseudo-code

{(input) Function to minimize
(input) Initial point
1yo.., by (input) Vectors defining search region R around x
(input)  Box expansion factor
(internal)  Iteration counter
(internal) Transformation matrix
A (internal)  Current position, current displacement

ol R

B g™

i function ReactiveAffineShaker (f, =, ( b;). p)

[t
1 repeat
. - A+ > ;Rand(—1,1)b;;
1 ifflz+A)< f(x)
i M e+ A
AAT

1. P+1 —1)—

- F +(p Jl” Al
i elseif flx - A) < f((x)
0 M @ x- A

AAT

1l P1 -1 _—

B +(p J” A
i else
j . AAT
i P+—I+(p 1)”&”2,
3 Yib; +— Pb;:
4 | t+1]
5. until convergence criterion;
w | return x;




RAS algorithm pseudo-code,
comments

Testing the function improvement on both x+A
and x-A is called double-shot strategy

It drastically reduces the probability of
generating two consecutive unsuccessful samples

If the double-shot strategy fails, then the
transformation is applied by replacing the
expansion factor p with its inverse p

the search speed is increased when steps are
successful, reduced only if no better point is
found after the double shot



Reactive affine shaker geometry

el — g
Er fi\ !

Reactive Affine Shaker geometry: two search trajectories leading to
two different local minima



Repetitions for robustness and
diversification

e RAS searches for local minimizers and is
stopped as soon as one is found

e Even when a local minimum is found, it is
generally impossible to determine whether it
is global or not

 Asimple way to continue the search is to
restart from a different initial random point



The Inertial Shaker

* RAS requires matrix-vector multiplications to
update the search region: it is slow if the
number of dimensions is large

Solution: Inertial shaker:

* the search box is always identified by vectors
parallel to the coordinate axes

e atrend direction is identified by averaging a
number of previous displacements



Inertial Shaker, pseudo-code

f (input) Function to mimimize

T (input) Initial and current point

b (input) Box defining search region R around @
4 (parameter) Current displacement

amplification  (parameter) Amplification factor for future displacements
history_depth  (parameter) Weight decay factor for past displacement average

v function InertialShaker (f, =, b)
: [ t+0

3 repeat

4 [~ success +— double_shot_on_all_components ( d)
5 if success = true

& T+ x4+ 0

7 find_trend ( &)

B ifflz+8)<flx)

n

. T T +0;

0 [ increase amplification and history_depth
. else

1 L decrease amplification and history_depth
i until convergence criterion is satisfied

14 return x;



Inertial Shaker, comments on the
pseudo-code

* find trend returns a weighted average of the
My, Previous displacements

T

_ 1
O iy € ( history depth) <
1

&, = amplification - ==

T
_ u
E g (history depth)2

u=1

 amplification and history depth are defined in
the algorithm

* My, IS chosen in order to cut off negligible

exponential weights and to keep the past history
reasonably small.



GIST

* The purpose of optimization is to design
automated techniques to identify inputs leading
to maximum (or minimum) output values .

* Basicidea: Start from an initial value, apply small
local changes to the inputs, test their effects.
Decide whether to accept the local change or not.

 Repeat until there is progress, leading to better
and better output values.



GIST (2)

* |f derivatives are available, one can predict
the effect of small local changes

* |f derivatives are not available, one can test
small changes directly (RAS) and keep locally
adapted models to reduce function
evaluations.

* Local adaptation occurs by learning from the
previous steps of the search .



