Local Search and Reactive Search Optimization (RSO)

Everybody carries on his shoulders the responsibility of his choices. It is a nice weight. (Romano Battiti)
Brute force is not the solution

- Let’s assume that one has to find the minimum of a discrete (combinatorial) optimization problem (for example, think about the *travelling salesman* problem)
- Evaluating all possible combinations of inputs can be computationally impossible
- One needs to resort to clever techniques to solve these problems
Local search based on perturbations

• starting from an initial tentative solution

• try to improve it through repeated small changes

• stop when no improving local change exists (local optimum, or locally optimal point)
Local search optimization: notation

- χ is the search space
- $X^{(t)}$ is the current solution at iteration t.
- $N(X^{(t)})$ is the neighborhood of point $X^{(t)}$, obtained by applying a set of basic moves μ_0, \ldots, μ_M to the current configuration

$$N(X^{(t)}) = \{X \in \mathcal{X} \text{ such that } X = \mu_i(X^{(t)}), i = 0, \ldots, M\}.$$
Local search optimization

• Local search starts from an admissible configuration $X^{(0)}$ and builds a trajectory $X^{(0)},...,X^{(t+1)}$.

• The successor of the current point is constructed as follows

$$Y \leftarrow \text{IMPROVING-NEIGHBOR}(N(X^{(t)}))$$

$$X^{(t+1)} = \begin{cases}
Y & \text{if } f(Y) < f(X^{(t)}) \\
X^{(t)} & \text{otherwise (search stops).}
\end{cases}$$

• IMPROVING -NEIGHBOR returns an improving element in the neighborhood
Local optima are not always global optima

- For many optimization problems, a closer approximation to the global optimum is required.
- More complex search schemes have to be adopted to balance in an optimal way exploration and exploitation.
Attraction basins

• Local minima tend to be clustered (good local minima tend to be closer to other good minima)

• The attraction basin associated with a local optimum is the set of points X which are mapped to the given local optimum by the local search trajectory

• if local search stops at a local minimum, kicking the system to a close attraction basin can be much more effective than restarting from a random configuration
Structure in optimization problems: the “big valley” hypothesis.
Modifications of local search based on perturbations

• local search by small perturbations is an effective technique but additional ingredients are in certain cases needed to obtain superior results
Local search in action: how to build a better bike, from the initial model (left) to a worse variation (middle), to the final and better configuration (right).
Reactive Search Optimization (RSO): Learning while searching

• Many problem-solving methods are characterized by a certain number of choices and free parameters, usually manually tuned.

• **Parameter tuning can be automated** as a part of the optimization algorithm

• This leads to self-contained, fully automated algorithms, independent from human intervention

Reactive Search Optimization (RSO) integrates online machine learning techniques and search heuristics for solving complex optimization problems.
Reactive Search Optimization (RSO):

RSO is a the intersection of optimization, computer science (algorithms and data structures) and machine learning.
Reactive Search Optimization

- RSO can be applied to systems that require to set some operating parameters to improve its functionality.
- A simple loop is performed: set the parameters, observe the outcome, then change the parameters in a strategic and intelligent manner until a suitable solution is identified.
- In order to operate efficiently, RSO uses memory and intelligence to improve solutions in a directed and focused manner.
Reactive Search Optimization

• While many alternative solutions are tested in the exploration of a search space, patterns and regularities appear.

• The human brain quickly learns and drives future decisions based on previous observations.

• This is the main inspiration source for inserting online machine learning techniques into the optimization engine of RSO.
Algorithms with self-tuning capabilities like RSO make life simpler for the final user. Complex problem solving does not require technical expertise but is available to a much wider community of final users.
RSO based on prohibitions: tabu search

• Basic idea: using prohibitions to encourage diversification

How?

• While constructing a trajectory for local minima search, every time a move is applied, the inverse move is temporarily prohibited
Tabu search: an example

• Let $\chi = \{0,1\}^L$

• The neighborhood is obtained by applying the elementary moves μ_i, ($i = 1,\ldots,L$) that change the i-th bit of the string $X = [x_1,\ldots, x_i,\ldots, x_L]$

• At each step, the selected move is the one that minimizes the target f in the neighborhood even if f increases, to exit from local minima.

• As soon as a move is applied, the inverse move is temporarily prohibited
Tabu search

- Tabu search can generate cycles. For example, if the current point $X^{(t)}$ is a strict local minimum
- In general, the inverses of the moves executed in the most recent part of the search are prohibited for a period T, in order to avoid cycles and to diversify
Prohibition and diversification

- Let $H(X, Y)$ be the Hamming distance between two strings X and Y
- if only allowed moves are executed, and T satisfies $T < (n - 2)$ (at least two moves are allowed at each iteration), then

 - The Hamming distance H between a starting point and successive points along the trajectory is strictly increasing for $T + 1$ steps:
 \[H(X^{(t+\tau)}, X^{(t)}) = \tau \text{ for } \tau \leq T + 1. \]

 - The minimum repetition interval R along the trajectory is $2(T + 1)$:
 \[X^{(t+R)} = X^{(t)} \Rightarrow R \geq 2(T + 1). \]
Prohibition and diversification (2)

prohibition is related to the amount of diversification:

• the larger T, the larger is the distance H that the search trajectory must travel before it is allowed to come back

• If T is too large, the number of allowed moves will shrink, leading to less freedom of movement.
An example of the relationship between prohibition T, and diversification measured by the Hamming distance $H(X(t);X(0))$. $T = 3$ in the example.
Tuning the T parameter

- The parameter T should be tailored to the specific problem
- BUT the choice of a **fixed** T without a priori knowledge is difficult
- RSO uses a simple mechanism to **change** T **during the search** so that the value $T^{(t)}$ is appropriate to the local structure of the problem
- RSO determines the minimal prohibition value which is sufficient to escape from an attraction basin around a minimizer
RSO with prohibitions in action. Three locally optimal points are shown together with contour lines of the function to be optimized. When starting from a locally optimal point, RSO executes loops which reach bigger and bigger distances from the attractor, until another attraction basin is encountered (if present).
RSO for tabu search

• T is equal to one at the beginning
• T increases if the trajectory is trapped in an attraction basin
• T decreases if unexplored search regions are visited, leading to different local optima
RSO: conclusions

• If the problem has a single local optimum the power of RSO is not needed, although not dangerous
• Most real-world problems are infested with many locally optimal points
• RSO is crucial to **transform a local search building block into an effective and efficient solver**.
• RSO with prohibitions has been used for problems ranging from combinatorial optimization to the minimization of continuous functions and to sub-symbolic machine learning tasks
GIST

• Local search is a simple and very effective way to identify improving solutions for discrete optimization problems
• It generates a sequence of changes, each change being local
• Local search stops at locally-optimal points and the current search trajectory is trapped
• Additional diversification means are needed to escape from local attractors.
GIST (2)

• Reactive Search Optimization (RSO) uses learning and adaptation during the optimization process, to fine-tune the search technique to the current problem, task and local properties.

• An intelligent module overseeing the basic local search process

• It automatically balances diversification and intensification