The LION Way: Machine Learning plus Intelligent Optimization

LIONlab, University of Trento, Italy, Apr 2015

http://intelligent-optimization.org/LIONbook

© Roberto Battiti and Mauro Brunato, 2015, all rights reserved.

Slides can be used and modified for classroom usage, provided that the attribution (link to book website) is kept.
Text and web mining – part I

Wholly new forms of encyclopedias will appear, ready made with a mesh of associative trails running through them, ready to be dropped into the memex and there amplified. (Vannevar Bush, 1945)
<html>
<head>
<title>Learning and Intelligent Optimization</title>
<meta name="author" content="Roberto Battiti"/>
<meta name="keywords" content="LION, ML, optimization, big data"/>
</head>
<body>
<h1>The LION way is the future</h1>
The reasons are explained in the LIONlab homepage.
</body>
</html>
HTTP – the protocol of the web

GET /thispath/thispage.html HTTP/1.1
Accept: */*
Accept-Language: it-it
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X; it-it)
AppleWebKit/418.9.1 (KHTML, like Gecko) Safari/419.3
Connection: keep-alive
Host: www.pippo.it

• Connect to well-known TCP port 80
What is web mining?

- The Web is an unstructured (or, at most, semi-structured) collection of data.
- Data come in form of human-readable texts and images. Data are hyperlinked.
- The Web is not a database
 - A complete description of data items (a schema) is missing.
 - Every word on a page can be an attribute
- The Web is a collection of human-readable data and human-exploitable hyperlinks.
Crawling the web

• One common need of hypertext processing: the ability of fetching and storing a large number of documents.
• Crawlers, Spiders, Web Robots, Bots
• Common examples:
 – wget
 – curl
Basic crawling principles

• Start from a given set of URLs.
• Collect pages.
• Scan collected pages for hyperlinks to pages that have not been collected yet.

• New URLs are potential new work and their set increases very fast.
A large-scale crawler
A large-scale crawler

• A single page fetch involves seconds of latency (⇒ More fetches at the same time).
• Highly concurrent DNS (possibly multiple servers).
• No multithreading, better asynchronous sockets.
• Avoid duplicate URLs.
A large-scale crawler: DNS usage

• Crawler access is often spread through different domains to avoid overloading web servers (but being more demanding to DNS servers).

• Cache can be slack with expiration times: better expired than late.

• Problem:
 – Standard DNS service in the OS does not handle concurrent requests, so a custom DNS client is necessary (asynchronous sending and receiving).

• Better solution: **prefetching** — do not wait for page request, but extract potential DNS queries from current pages.
A large-scale crawler: concurrent page fetches

• Web-scale crawlers fetch > 105 pages per second. Page retrievals must proceed in parallel.

• Two approaches:
 – Exploit OS-level multithreading (one thread per page).
 – Use non-blocking sockets and event handler.

• What about multiprocessors?
 – Bottlenecks are network and disks, not CPU.
A large-scale crawler: multithreading

• Multiple threads, *statically created* to avoid overhead. Call to `connect()`, `send()` or `recv()` may block one thread while others run.

• Pros
 – Easy coding, complexity delegated to OS

• Cons
 – Synchronization problems and consequent IPC overhead
 – Hardly optimized (OS assumes general purpose)
 – One disaster spoils all threads (better with processes)
A large-scale crawler: non-blocking sockets

• Single thread, arrays of non-blocking sockets, using `select()` to poll for received data.
• While doing other business (indexing, saving to disk) incoming data are buffered until the next polling cycle.
• Pros
 – Fast, little overhead from OS
 – Better control on overall status
 – No need of protection or synchronization.
• Cons
 – Harder to code: need multiple data structures.
A large-scale crawler: link extraction

• Web pages are parsed for hyperlinks. URLs must be **canonicalized**:

 www.pippo.com/here/not/../there#this

 ↓

 http://www.pippo.com:80/here/there/

• Problems

 – Domain name - IP address relationship is many-to-many, due to load balancing needs and logical website mapping.
A large-scale crawler: avoiding repeated visits

• Visited URLs must be stored to avoid unneeded duplicate visits: need of a fast memory-based isUrlVisited? function.

• To save space, URLs are hashed, commonly by 2-level functions to exploit locality: (hostname,path).
A large-scale crawler: manage robot exclusion

• robots.txt usually helps crawlers avoid useless portions of a website

```
User-agent: LIONcrawler
Crawl-delay: 1000
Disallow: /this/path
Disallow: /that/directory
```

```
User-agent: *
Disallow: /secrets
Disallow: /dynamic/page
Disallow: /ever/changing/path
```
A large-scale crawler: avoid spider traps

- Some web sites can be maliciously designed in order to crash spiders:
 - Recursive links via soft aliases.
 - Long URLs to overflow lexers and parsers.
A large-scale crawler: per-server queues

• Web servers need to safeguard against DoS attacks.

• Crawlers must limit frequency of requests to the same server

• Span many different servers at once, but no more than n pages per second each (problem: DNS overload).

• Use queues.
Document indexing: queries

• The simplest kind of query involves relationships between terms and documents:
 – Documents containing the word “java”
 – Documents containing the word “java” but not “coffee”

• Proximity queries require the use of inverted indices.
 – Documents containing the phrase “java beans” or the word “API”
 – Documents where “java” and “island” occur in the same sentence.
Document indexing: operations on text

- filter out HTML tags
- tokenization
 - simplest case: tokens are all nonempty sequences of characters not including spaces or punctuation marks.
- stopword removal
- downcasing
- stemming
 - PLAYS PLAYING PLAYED REPLAY -> PLAY
- collapse variant forms ("am", "is", "are" all become "be")

...But beware the loss of information!
Information Retrieval:
Performance measures

- Retrieved relevant items (true positives): $A \cap B$
- Retrieved irrelevant items (false positives): $B \setminus A$
- Unretrieved relevant items (false negatives): $A \setminus B$

Which fraction of retrieved documents is relevant?

\[
\text{Precision} = \frac{|A \cap B|}{|B|}
\]

Which fraction of relevant documents has been retrieved?

\[
\text{Recall} = \frac{|A \cap B|}{|A|}
\]
Document ranking: intuition
Document ranking: intuition
Document ranking: intuition
Document ranking: intuition

All documents

Relevant documents

Higher ranking

Red blocks should appear at the top!
Precision and recall w/ ranking

• D: corpus of $n = |D|$ documents; Q: set of queries.
• For query $q \in Q$, define $D_q \subseteq D$ as the set of all relevant documents (exhaustive, manually defined).
• Let $(d_1^q, d_2^q, \ldots, d_n^q)$ be an ordering (“ ranking”) of D returned by system in response to query q.
• Let $(r_1^q, r_2^q, \ldots, r_n^q)$ be defined as

$$r_i^q = \begin{cases} 1 & \text{if } d_i^q \in D_q \\ 0 & \text{otherwise} \end{cases}$$
Precision and recall w/ ranking

• Recall(k): fraction of relevant documents found in the top k positions

$$\text{recall}_q(k) = \frac{1}{\left| D_q \right|} \sum_{i=1}^{k} r_i^q$$

• Precision(k): fraction of top k documents that are relevant

$$\text{precision}_q(k) = \frac{1}{k} \sum_{i=1}^{k} r_i^q$$
Precision and recall w/ ranking

- Average precision

\[
\text{avg. precision}_q = \frac{1}{|D_q|} \sum_{k=1}^{\mathcal{D}} \text{precision}_q(k)
\]
Precision / recall tradeoff

• Average precision is 1 iff all relevant documents are ranked before irrelevant ones.
• Interpolated precision at recall = ρ: maximum precision for recall greater or equal to ρ.
• By convention, precision $q(0) = 1$ and recall $q(0) = 0$.
• Recall can be increased by increasing k, but then more and more irrelevant documents occur, driving down precision.
• Therefore, a recall-precision plot has a downward slope.
Precision / recall tradeoff

- “Interpolated precision”
 - Answering the question “What is the best precision I can get for a recall score no smaller than r?”

 \[
 \text{interpolated_precision}_q(r) = \max_{k: \text{recall}_q(k) \geq r} \text{precision}_q(k)
 \]

- Stepwise constant, non-increasing function of recall rate.
Precision / recall tradeoff

= non-dominated points (in the Pareto sense)

= interpolated precision

\[
\begin{array}{cc}
 k & r_k^q \\
 1 & 1 \\
 2 & 0 \\
 3 & 1 \\
 4 & 1 \\
 5 & 0 \\
 6 & 1 \\
 7 & 0 \\
 8 & 0 \\
 9 & 1 \\
 10 & 0 \\
 11 & 0 \\
 12 & 0 \\
 13 & 0 \\
 14 & 0 \\
 15 & 1 \\
 16 & 0 \\
 17 & 0 \\
 18 & 0 \\
 19 & 0 \\
 20 & 0 \\
\end{array}
\]
The vector-space model

- Representing document as points in a multi-dimensional space, each axis representing a term (token).
- Coordinate of document d in direction of term t determined by:

$$TF(d, t) = \frac{n(d, t)}{|d|}$$
The vector-space model

- Inverse document frequency:
 - rewards rare terms, small for frequent terms
 - smooth, slow growth

\[\text{IDF}(t) = \log \frac{1 + |D|}{|D_t|} \]
The vector-space model

• Document d is represented by vector

$$d = (d_t)_{t \in T} \in \mathbb{R}^{|T|}$$

• where component d_t is

$$d_t = TF(d, t) \times IDF(t)$$

• A query is a sequence of terms, therefore it has the same representation.
Proximity between documents

- Euclidean distance: to avoid artifacts, vectors should be normalized: an n-fold replica of document d should have the same similarity to q as d itself.

$$\text{dist}(d, q) = \frac{d - q}{\|d\| \cdot \|q\|}$$
Proximity between documents

• Cosine similarity: cosine of the angle between vectors d and q.

$$\text{sim}(d, q) = \frac{d \cdot q}{\|d\| \|q\|}$$
TFIDF-based IR system

- Information Retrieval system based on TFIDF coordinates:
 - Build inverse index with $\text{TF}(t,d)$ and $\text{IDF}(t)$ information
 - Given a query, map it onto TFIDF space
 - Sort documents according to similarity metric
 - return most similar documents

- Now we are ready to refine the search!
Relevance feedback

• The average web query is as few as two terms long!

• After the first response, a sophisticated user learns how to improve his query. For everybody else...
 – Results page may include a rating form for documents (“Please mark documents that you have found useful”)
 – User’s form submission is a form of relevance feedback.
Relevance feedback:
Rocchio’s method

Correct query q by pushing it closer to a set of useful documents D_+ and pulling it apart from a set D_- of useless docs:

$$q' = q + a d_{D_+} - b d_{D_-}$$

Parameters α, β and γ control the amount of modification.
Relevance feedback:
Rocchio’s method
Relevance feedback: Rocchio’s method
Relevance feedback: Rocchio’s method
Relevance feedback: Rocchio’s method
Relevance feedback: Rocchio’s method
Relevance feedback: Rocchio’s method

• If user input is absent:
 – Automatically build \(D_+ \) by assuming that a certain number (e.g., 10) of highest-ranked documents are more relevant than others.

• One bad word may spoil it all
 – Not all terms in documents in \(D_+ \) and \(D_- \) should be used in the formula.
 – E.g., for every document in \(D_+ \) and \(D_- \) only take the 10 terms with the highest IDF index.
Documents as sets

- Another, simpler, representation of documents: sets of terms
 - even less information retained: no term order, no term proximity, no term count.
 - “Bag of words” can refer to this representation (but is often associated to multiset representation, where elements retain count information)
Similarity of sets

- Jaccard coefficient: number of common elements (intersection), normalized by overall size (union):

\[r'(A, B) = \frac{|A \cap B|}{|A \cup B|} \]

- Similarity measure, ranging from 0 to 1.
- 0 if sets are disjoint, 1 if sets are equal.
- \(1-r'(A,B) \) is a metric.
Approximating the Jaccard coefficient

• Even with the most efficient set representation, computing the Jaccard coefficient is linear in the set size.

• Computing Jaccard coefficients between all pairs of documents in a corpus has therefore a high time complexity:

\[\mathcal{O}(m^2 |d|) \]

where \(m \) is the number of documents (millions?) and \(|d| \) is the average document size (thousands?).
Approximating the Jaccard coefficient

Observation:

\[
\frac{|A \cap B|}{|A \cup B|} = \Pr(x \in A \cap B | x \in A \cup B).
\]

So we can approximate the Jaccard coefficient by picking random elements in the union and counting how many belong to both sets.
Approximating the Jaccard coefficient

• To do it efficiently: let π be a random permutation on T (the set of terms). Then:

$$t = \arg \min_p (A \cup B)$$

is a uniformly chosen term in the union.

• The term t also belongs to the intersection if and only if

$$\min_p (A) = \min_p (B).$$
Approximating the Jaccard coefficient

- Precompute N permutations $\pi_1, ..., \pi_N$ of term set;
- for all document ids $i=1,...,m$ and for all permutations, compute
 \[m_{ik} = \min_k \{ d_i \}; \]
- for all pair of documents (d_i,d_j), just let
 \[r'(d_i, d_j) \left\{ k=1, \ldots, N: m_{ik} = m_{jk} \right\}, \]
 i.e., the frequency of permutations that end up to the same minimum.
- Complexity is significantly reduced:
 \[O\left(N(n + |d| + m^2) \right). \]