The LION Way: Machine Learning plus Intelligent Optimization

LIONlab, University of Trento, Italy, Apr 2015

http://intelligent-optimization.org/LIONbook

© Roberto Battiti and Mauro Brunato, 2015, all rights reserved.

Slides can be used and modified for classroom usage, provided that the attribution (link to book website) is kept.
I don’t mind my eyebrows. They add... something to me. I wouldn’t say they were my best feature, though. People tell me they like my eyes. They distract from the eyebrows.

(Nicholas Hoult)
Feature selection (2)

• Before starting to learn a model from the examples, one must be sure that the input data have sufficient information to predict the outputs, without excessive redundancy, which may causes “big” models and poor generalization.

• Feature selection is the process of selecting a subset of relevant features to be used in model construction.
Reasons for feature selection

• Selecting a small number of informative features has advantages:

1. Dimensionality reduction
2. Memory usage reduction
3. Improved generalization
4. Better human understanding
Methods for feature selection

- Feature selection is a problem with many possible solutions: no simple recipe.

1. Use the designer **intuition and existing knowledge**

2. Estimate the relevance or discrimination **power** of the individual features
Wrapper, Filter and Embedded methods

- The value of a feature is related to a model-construction method. Three classes of methods:

1. **Wrapper methods** are built “around” a specific predictive model (measure error rate)
2. **Filter methods** use a *proxy measure* instead of the error rate to score a feature subset
3. **Embedded methods** perform feature selection as an integral part of the model construction process.
Top-down and Bottom-up methods

• In a **bottom-up** method one gradually **adds** the ranked features in the order of their individual discrimination power and stops when the error rate stops decreasing.

• In a **top-down truncation** method one starts with the complete set of features and progressively **eliminates** features while searching for the optimal performance point.
Linear models

Can we associate the importance of a feature to its weight?

\[y = w_1 x_1 + w_2 x_2 + \ldots + w_d x_d. \]

Careful with ranges and scaling. **Normalization helps.**
Nonlinearities and mutual relationships between features

Measuring individual features in **isolation** will discard **mutual relationships** \(\Rightarrow\) selection can be suboptimal

XOR function of two inputs

E.g., to get a proper meal one needs to eat either a hamburger or a dessert but not both.

The individual presence or absence of a hamburger (or of a dessert) in a menu will not be related to classifying a menu as correct or not.
Correlation coefficient

Pearson correlation coefficient: widely used measure of linear relationship between numeric variables.

\[\rho_{X_i,Y} = \frac{\text{cov}[X_i, Y]}{\sigma_{X_i} \sigma_Y} = \frac{E[(X_i - \mu_{X_i})(Y - \mu_Y)]}{\sigma_{X_i} \sigma_Y}; \]

Examples of data distributions and corresponding correlation values
Examples of data distributions and corresponding correlation values
Correlation Ratio

- **Correlation ratio** is used to measure a relationship between a numeric input and a **categorical** output.

- Significant → at least one outcome class where the feature’s average value is **significantly different** from the average on all classes.

- Let L_y be the number of times that outcome y appears, so that one can **partition the sample input vectors** by their output:

$$\forall y \in Y \quad S_y = ((x_{jy}^{(1)}, \ldots, x_{jy}^{(n)}); j = 1, \ldots, \ell_y).$$
Correlation ratio (2)

- Average of the i-th feature within each output class:

\[\forall y \in Y \quad \bar{x}_y^{(i)} = \frac{1}{\ell_y} \sum_{j=1}^{\ell_y} x_{jy}^{(i)}, \]

- Overall average:

\[\bar{x}^{(i)} = \frac{1}{\ell} \sum_{y \in Y} \sum_{j=1}^{\ell_y} x_{jy}^{(i)} = \frac{1}{\ell} \sum_{y \in Y} \ell_y \bar{x}_y^{(i)}. \]

- Correlation ratio between the i-th feature and outcome:

\[\eta^{2}_{X_i,Y} = \frac{\sum_{y \in Y} \ell_y (\bar{x}_y^{(i)} - \bar{x}^{(i)})^2}{\sum_{y \in Y} \sum_{j=1}^{\ell_y} (x_{jy}^{(i)} - \bar{x}^{(i)})^2}. \]
Statistical hypothesis testing

- A **statistical hypothesis** test is a method of making statistical decisions by using experimental data.
- Hypothesis testing answers the question: Assuming that the **null hypothesis** is true, *what is the probability of observing a value for the test statistic that is at least as large as the value that was actually observed?* Reject if prob. is too low.

- **Statistically significant** ↔ unlikely to have occurred by chance.
Relationship between two categorical features

- **Null hypothesis** that the two events “occurrence of term t” and “document of class c” are **independent**, the expected value of the above counts for joint events are obtained by **multiplying probabilities** of individual events.

- If the count deviates from the one expected for two independent events, one can conclude that the two events are **dependent**, and that therefore the feature is significant to predict the output. Check if the deviation is sufficiently large that it cannot happen by chance.
Chi-squared test

• Chi-squared statistic:

\[
\chi^2 = \sum_{c,t} \left[\frac{\text{count}_{c,t} - n \cdot \Pr(\text{class} = c) \cdot \Pr(\text{term} = t)}{n \cdot \Pr(\text{class} = c) \cdot \Pr(\text{term} = t)} \right]^2.
\]

• where \(\text{count}_{c,t}\) is the number of occurrences of the value \(t\) given the class \(c\)

• the best features are the ones with larger \(\chi^2\) values

If independent
The uncertainty in an output distribution can be measured from its entropy:

\[H(Y) = -\sum_{y \in Y} \Pr(y) \log \Pr(y). \]

After knowing a specific input value x, the uncertainty in the output can decrease.
Mutual information (2): Conditional Entropy

- The entropy of Y after knowing the i-th input feature value is

$$H(Y|x_i) = -\sum_{y \in Y} \Pr(y|x_i) \log \Pr(y|x_i),$$

- The **conditional entropy** of variable Y is the expected value of $H(Y|x_i)$

$$H(Y|X_i) = E_{x_i \in X_i}[H(Y|x_i)] = \sum_{x_i \in X_i} \Pr(x_i)H(Y|x_i).$$
Mutual Information (3)

- **Mutual information between** X_i **and** Y:
 The amount by which the uncertainty **decreases**

 $$I(X_i; Y) = I(Y; X_i) = H(Y) - H(Y|X_i).$$

- An equivalent expression which clarifies the **symmetry** between X_i and Y:

 $$I(X_i; Y) = \sum_{y,x_i} \Pr(y, x_i) \log \frac{\Pr(y, x_i)}{\Pr(y) \Pr(x_i)}.$$

- Mutual Information captures **arbitrary non-linear dependencies** between variables
Reducing the number of input attributes used by a model, while keeping roughly equivalent performance, has many advantages.

It is difficult to rank individual features without considering the specific modeling method and their mutual relationships.
GIST 2

• Trust the correlation coefficient only if you have reasons to suspect linear relationships
• Correlation ratio can be computed even if the outcome is not quantitative
• Use chi-square to identify possible dependencies between inputs and output
• Use mutual information to estimate arbitrary dependencies between qualitative or quantitative features